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Abstract 
Sparse representation models uses a linear combination of a few atoms selected from an over-completed 

dictionary to code an image patch which have given good results in different image restitution applications. The 

reconstruction of the original image is not so accurate using traditional models of sparse representation to solve 

degradation problems which are blurring, noisy, and down-sampled. The goal of image restitution is to suppress 

the sparse coding noise and  to improve the image quality by using the concept of sparse representation. To 

obtain a good sparse coding coefficients of the original image we exploit the image non-local self similarity and 

then by centralizing the sparse coding coefficients of the observation image to those estimates. This non-locally 

centralized sparse representation model outperforms standard sparse representation models in all aspects of 

image restitution problems including de-noising, de-blurring, and super-resolution.  

                       

I. INTRODUCTION 
The main problem in image processing is image 

is degraded by the following versions down 

sampling, noisy, and blurring, such as medical 

imaging, remote sensing, close observation especially 

of a suspected spy(or)criminal, and entertainment, 

etc. For an observed image y, the problem of image 

restoration can be formulated by 

y=Hx+υ                                                                    

(1) 

Where H is a degradation matrix, x is the original 

image vector and υ is the additive noise vector. With 

different settings of matrix H, Eq. (1) can represent 

different image restitution problems; for example, 

image de-noising when H is an identity matrix, image 

de-blurring when H is a blurring operator, image 

super-resolution when H is a composite operator of 

blurring and down-sampling, and compressive 

sensing when H is a random projection matrix[1]-[3]. 

In the past decades, extensive studies have been 

conducted on developing various image restitution 

approaches[4]-[23],[28].Due to the loss of 

information caused by motion blur nature of image 

restitution, the regularization-based techniques have 

been widely used by regularizing the solution 

spaces[5]-[9],[12],[22].In order for an effective 

regularizer,  it is of great importance to find and 

model the appropriate prior knowledge of natural 

images, and various image prior models have been 

developed[5]-[8], [14], [17], [18], [22]. 

 

 

 

 

Sparse representation is used to reconstruct original 

image from the degraded image. Sparse 

representation is a principle of that a image can be 

approximated by a linear combination of sparse 

codes. 

It can be formulated as b=x1a1+………..+xkak 

Where a1,a2 are dictionary atoms or basis vector 

x1, x2…………..are sparse co-efficient vector 

The classic regularization models introducing 

additional information to solve the loss of 

information caused by the motion blur such as the 

quadratic Tikhonov regularization[8] and the TV 

regularization[5]-[7] are effective in removing the 

noise errors but have certain characteristics to over-

smooth the images due to the piecewise constant 

assumption. As an uncommon, in recent years the 

sparsity–based regularization[9]-[23] had led to 

promising results for image restitution problems[1]-

[3], [16]-[23].The sparse representation model 

assumes that image 
NX   can be represented as 

x ≈ Φα, where Φ ϵ R
n*M

 (N<M) is an over-complete 

dictionary, and most entries of the coding vector α 

are zero or close to zero. The sparse decomposition 

of x can be obtained by solving an lo-minimization 

problem, formulated as arg minx


 

0 2,s. t . x ,       where α αα0 is a false 

norm that counts the number of non-zero entries in α, 

and ε is a small constant controlling the 

approximation error. since lo-minimization is an NP-

hard combinational optimization problem, it is often 
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relaxed to the convex l1-minimization .The l1-norm 

based sparse coding problem can be generally 

formulated in the following Lagrangian form: 

arg minx


   2

2 1x                 (2) 

Where constant λ denotes the regularization 

parameter. With an appropriate selection or the 

regularization parameter λ, we can get a good 

balance between the sparse approximation error of x 

and the sparsity of α ,and the term ”sparse coding” 

refer to this sparse approximation process of x. Many 

efficient l1-minimization techniques have been 

proposed to solve Eq.(2), such as iterative 

thresholding algorithms [9]-[11] and breg-man split 

algorithms [24], [25].  

In addition, compared with the analytically designed 

dictionaries (e.g. wavelet/curvelet dictionary),the 

dictionaries learned from example image patches can 

improve much the sparse representation performance 

since they outperforms characterize the image 

structures.[26], [27]. 

In the scenario of image restitution, what we 

observed is the degraded image signal y via. To 

recover x from y, first y is sparsely coded with 

respect to Φ by solving the following minimization 

problem: 

arg miny


 

2

2 1y H        
                    

(3) 

Here the concept of sparse coding noise is 

introduced. The difference between the sparse code 

of the degraded image and original sparse code image 

is sparse coding noise (SCN). 

                           ʋα = αy-αx 
where ʋα sparse coding noise 
αy-is sparse code of degraded image 
αx-is sparse code of original image 

The goal of image restoration turns to 
suppress the sparse coding noise. To reduce the 
sparse coding noise centralized the sparse codes 
to some good estimation of αx  

In practice, a good estimation  of can be obtained 

by exploiting the rich amount of non-local 

redundancies in the observed image. 

The proposed NCSR model can be solved 

effectively by traditional iterative shrinkage 

algorithm [9], which allows us to adaptively adjust 

the regularization parameters from a Bayesian 

viewpoint. The extensive experiments conducted on 

typical image restitution problems, including image 

de-noising, de-blurring and super-resolution, 

demonstrate that the proposed NCSR based image 

restitution method can achieve highly competitive 

performance to state-of-the-art de-noising 

methods(e.g.,BM3D[17], [39]-[41], LSSC[18]), and 

outperforms state-of –the-art image de-blurring and 

super-resolution methods. 

II. NON-LOCALLY CENTRALIZED 

SPARSE REPRESENTATION 

(NCSR) 
Following the notation used in [19], for an 

image x ϵ RN let xi=Rix denote an image patch of 

size  𝑛 ∗  𝑛 extracted at location i, where Ri is the 
matrix extracting patch xi from x at location i. 
Given an dictionary Φ ϵ Rn*M, n ≤ M each patch can 
be sparsely represented as xi≈ Φ αx,i by solving an 
l1-minimization problem αx,i = argminαi{‖xi- 
Φαi‖2

2+λ‖αi‖1 }. Then the entire image x can be 
overlapped to suppress the boundary errors, and 
we obtain a redundant patch-based 
representation. 
Reconstructing x from {αx,i} is an over-determined 
system, and a straightforward least-square 
solution is [19]:. 

   
1

,1 1

N NT T

i i i x ii i
x R R R 



 
    For 

the convenience of expression, we let 

   
1

,1 1

N NT T

x i i i x ii i
x R R R 



 
       (4) 

where 𝛼xdenotes the concatenation of all 𝛼x,i. The 

above equation is nothing but telling that the overall 

image is reconstructed by averaging each 

reconstructed patch of xi. 

In the scenario of image restitution (IR), the 

observed image is modeled as y=Hx+ʋ. The 

sparsity-based image restitution method recovers x 

from y by solving the following minimization 

problem. 

arg miny


  2

2 1y H        
   

(5) 

The image x is then reconstructed as 

ˆ
yx     

 

A. Sparse coding noise 

In order for an effective image restitution , the 

sparse codes obtained by solving the objective 

function in Eq.(5) are expected to be as close as 

possible to the true sparse codes of the original image 

x. However, due to the degradation of the observed 

image y(e.g., noisy and blurred), the image restitution 

quality depends on the level of the sparse coding 

(SCN), which is defined as the difference between αy 

and αx 

y x                                               (6) 

In the first experiment, we add Gaussian white 

noise to original image x to get the noisy image y (the 

noise level n =15).Then we compute αx and αy by 

solving Eq.(2)and Eq(5), respectively. The Discrete 

Cosine Transform bases are adopted in the 
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experiment. Then the sparse coding noise ʋα is 
computed. we plot the distribution of ʋα 
corresponding to the 4th atom in the dictionary. 
we plot the distributions of when the observed 
data y is blurred(by a Gaussian blur kernel with 
standard deviation 1.6) and down-sampled by 
factor 3 in both horizontal and vertical directions 
(after blurred by a Gaussian blur kernel with 
standard deviation 1.6), respectively. We can see 
that the empirical distributions of sparse coding 
noise ʋα can be well characterized by Laplacian 

distributions, while the Gaussian distributions have 

much larger fitting errors.  

 

B. Modeling of NCSR 

The definition of sparse coding noise indicates 

that by suppressing the sparse coding noise ʋα we 

could improve the image restitution output x̂ . 

However, the difficulty lies in that the sparse 
coding vector αx is unknown so that ʋα cannot be 
directly measured. Nonetheless, if we could have 
some reasonably good estimation of αx, denoted 
by β available, then αy - β can be a good estimation 
of the sparse coding noise ʋα. To suppress ʋα and 
improve the accuracy of αy and further improve 
the objective function of Eq.(5),we can propose 
the following centralized sparse representation 

model[22]: 

arg miny


 

2

2 1i i i p

i i

y H      
 

     
 

       
         (7) 

Where βi is some good estimation of αi, γ  is the 
regularization parameter and p can be 1 or 2.In the 

above centralized sparse representation model, while 

enforcing the sparsity of coding coefficients the 

sparse codes are also centralized to some estimate of 

so that sparse coding noise can be suppressed. 

One important issue of sparsity-based image 

restitution is the selection of dictionary .conventional 

analytically designed dictionaries, such as discrete 

cosine transform, wavelet and curvelet dictionaries, 

are in sufficient to characterize the so many complex 

structures of natural images. The universal 

dictionaries learned from example image patches by 

using algorithms such as KSVD[26]  can better adapt 

to local image structures. In general the learned 

dictionaries are required to be very redundant such 

that they can represent various image local structures. 

However, it has been shown that sparse coding with 

an over-complete dictionary is unstable[42], 

especially in the scenario of image restitution. In our  

previous work[21], we cluster the training patches 

extracted from a set of example images into K 

clusters, and learn a PCA sub-dictionary is adaptively 

selected to code it, leading to a more stable and 

sparse representation, and consequently better image 

restitution results. 

We extract image patches from image x and 

cluster the patches into K clusters (K=70) by using 

the K- means clustering method. Since the patches in 

a cluster are similar to each other, there is no need to 

learn an over-complete dictionary for each cluster. 

Therefore, each cluster we learn a dictionary of PCA 

bases and use this compact PCA dictionary to code 

the patches in this cluster.(For the details of PCA 

sub-dictionaries construct a large over-complete 

dictionary to characterize all the possible local 

structures of natural images. 

In the conventional sparse representation models 

as well as the model in Eq.(7),the local sparsity term 

‖αi‖1 is used to ensure that only a small number of 

atoms are selected from the over-complete dictionary 

Φ to represent the input image patch. In our 

algorithm for each patch to be coded, we adaptively 

select one sub-dictionary from the trained K PCA 

sub-dictionaries to code it . This is actually enforces 

the coding coefficients of this patch over the other 

sub-dictionaries to be 0, leading to a very sparse 

representation of the given patch. In other words, our 

algorithm will naturally ensure the sparsity of the 

coding coefficients, and thus the local sparsity of the 

coding coefficients, and thus the local sparsity 

regularization term ‖αi‖1 can be removed. Hence we 

propose the following sparse coding model: 

arg miny


 

2

2 i i p

i

y H    
 

    
 

    
                       

(8) 

There is only one regularization term ‖αi - βi‖p 
in the above model. In the above model. In the 
case that p=1, and the estimate βi is obtained by 
using the non-local redundancy of natural images, 
this regularization term will become a non-locally 
centralized sparse representation(NCSR).Next lets 
discuss how to obtain a good estimation βi  of the 
unknown sparse coding vectors αi . 

 

C. Non-local Estimate of Unknown Sparse code  

Generally, there can be various ways to make an 

estimate of αx, depending on how much the prior 
knowledge of αx we have. If we have many training 
images that are similar to the original image x, we 
could learn the estimate β of αx of from the 
training set. However, in many practical situations 
the training images are simply not available. On 
the other hand, the strong non-local correlation 
between the sparse coding coefficients allows us 
to learn the estimate β from the input data. Based 
on the fact that natural images often  contain 
repetitive structures, i.e., the rich amount of non-

local redundancies  [30], we search the non-local 

similar patches to the given patch i in a large window 
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centered at pixel i. For higher performance, the 

search of similar patches can also be carried out 
across different scales at the expense of higher 
computational complexity, as shown in [31]. Then 
a good estimation n of αi, i.e., βi, can be computed 
as the weighted average of those sparse codes 
associated with the non-local similar patches 
(including patch i) to patch i. For each patch xi, we 

have a set of its similar patches, denoted by i . 

Finally βi can be computed from the sparse codes 

of the patches within i . 

Denote by αi,q the sparse codes of patch xi,q within 

set i  then can be computed as the weighted 

average of αi,q                                            

, ,

i

i i q i q

q

  


                         (9) 

Where ,i qw  is the weight. Similar to the non-local 

means approach[30], we set the weights to be 

inversely proportional to the distance between 

patches xi and xi,q 

 2

, , 2

1
ˆ ˆexp /i q i i qw x x h

W
       (10) 

Where ˆˆ
i ix    and , ,

ˆˆ
i q i qx   are the 

estimates of the patches xi and xi,q, h is a pre-

determined scalar and W is the normalization factor. 

In the case of orthogonal dictionaries(e.g., the local 

PCA dictionaries used in this work), the sparse codes

ˆ
i and ˆ ,i q can be easily computed as 

ˆ ˆT

i ix   and 
, ,

ˆ ˆT

i q i qx   . Our 

experimental results show that by exploiting the non-

local redundancies of natural images, we are able to 

achieve good estimation of the unknown sparse 

vectors and the NCSR model of Eq.(8) can 

significantly improve the performance of the 

sparsity-based image restitution results. 

Eq.(8) can be solved iteratively. We first 

initialize βi as 0, i.e.,
 1

0i

  and solve for the 

sparse coding vector, denoted by 
 0

y , using 

some standard sparse coding algorithm. Then we can 

get the initial estimation of x, denoted by 
 0

x , via 

   0 0

yx   . Based on 
 0

x , we search 

for the similar patches to each patch i, and hence the 

non-local estimate of βi can be updated using 
Eqs.(9) and (10). The updated estimation of αx 

denoted by 
 0

i , will then be used to improve the 

image restitution quality. Such a procedure is iterated 

until convergence. In the l
th

 iteration, the sparse 

vector is obtained by solving the following 

minimization problem . 

 

 
arg min

l

y


 

2

2

l

i i p

i

y H    
 

    
 

    
                 (11) 

The restorecd image is then updated as.
   ˆ
l l

yx  . 

In the above iterative process, the accuracy of sparse 

coding coefficient  
 l
y  is gradually improved, 

which in turn improves the accuracy of βi . The 
improved βi are then used to improve the 
accuracy of αy and so on. Finally, the desired 
sparse code vector is obtained when the alternative 

optimization process falls into a local minimum.  

 

III. ALGORITHM OF NCSR 
A. parameters determination 

In Eq.(8) or Eq.(11) the parameter λ that 
balances the fidelity term  and the centralized 
sparsity term should be adaptively determined for 
better image restitution performance. In this 
subsection we provide a Bayesian interpretation 
of the image restitution using non-locally 
centralized sparse representation model, which 
also provides us an explicit way to set 
regularization parameter λ. In the literature of 
wavelet de-noising, the connection between 
Maximum a Posterior(MAP) estimator and sparse 
representation has been established [28], and 
here we extend the connection from the local 
sparsity to non-locally centralized sparsity. 
For the convenience of expression, let’s define θ = 
α -β 
For a given β, the MAP estimation of θ can be 
formulated as

arg max log ( / y)y P


 
 

 arg max{log (y/ ) logP }P


  
   

(12) 
The likelihood term is characterized by the 
Gaussian distribution 
            

    2

22

1 1
/ / , exp

22 nn

P y P y y H   


 
     

 
  

                                                                               (13)                    
Where θ and β are assumed to be independent. In 
the prior probability P(θ) , θ reflects the variation 
of from its estimation β . If we take β as a very 
good estimation of the sparse coding coefficient of 
unknown true signal, then θy = αx – β is basically 
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the sparse coding noise associated with αy, and  
the sparse coding noise signal can be well 
characterized by the Laplacian distribution. Thus, 
we can assume that  θ follows i.i.d.  Laplacian 

distribution, and the joint prior distribution P(θ) can 

be modeled as 

                     

 
 

,,

1
exp

2

i

i j i ji j

j
P






   
   
    



                                                                               (14)                             

where θi(j)are the j
th

 elements of θi, and .i j  is the 

standard deviation of θi(j)substituting Eqs. (13) and 

(14) into Eq. (12), we obtain 

arg miny


 

   2 2

2

1
2 2 *

,
n i i

i j

y H j j
i j

   


 
    

 
  

                                                                              

 (15)             

Hence, for a given β the sparse codes α can then 
be obtained by minimizing the following objective 
function 
   arg miny



    

   2 2

2

,

1
2 2 n i i

i j i j

y H j j   


  
     

  
  

                                                                               (16)            

 

Compared with Eq. (8) we can see that the l1-
normalization(i.e., p=1) should be chosen to 
characterize the sparse coding noise term αi-βi 
comparing Eq. (16) with (8),we have 

2

,

,

2 2 n
i j

i j





                    (17) 

In order to have robust estimations of 

,i j the image non-local redundancies can be 

exploited. In practice, we estimate ,i j using the 

set of θi computed from the non-local similar 
patches λi,j with the updated with the updated θ in 
each iteration or in several iterations to save 
computational cost. Next we present the detailed 
algorithm of the proposed image restitution using 
non-locally centralized sparse representation 
scheme. 
 
Algorithm : Image Restitution Using Non-locally 
Centralized Sparse Representation 
 1. Initialization: 

      (a) Set the initial estimate as x̂  = y for 

image de-nosing and de-blurring, or 

initializing x̂  by bi-cubic interpolator for 

image super-resolution; 
 

      (b) Set initial regularization parameter λ 
and δ; 
 
2. Outer loop (dictionary learning and 
clustering): iterate on l=1, 2,….., L 
 

(a) Update the dictionaries {Φk} via k-
means and principle component 
analysis; 
 

       (b) Inner loop (clustering): iterate on j = 
1,2,….., j 

            (I)
      1/2ˆ ˆ ˆj j jTx x H y Hx


    

where δ is   the pre-determined constant; 
            (II)Compute
     1/2 1/2

1 1
ˆ ˆ[ R x ,....., R x ]

j j jT T

k kN Nv
 

                

Where
ik is the dictionary assigned to 

patch
 1/2ˆ ˆ j

i ix R x


 ; 

            (III)Compute 
 1j

i


 using the 

shrinkage operator given in Eq.(19); 
 
            (IV)If mod (j, J0) = 0 update the 
parameters λi,j and {βi}using Eqs. (17) and (9), 
respectively ; 
 
          (V) Image estimate update: 

   1 1
ˆ

j j

yx 
 
 using Eq. (4)  

        
B. Iterative Shrinkage Algorithm  
we use an iterative algorithm to solve the NCSR 
objective function in Eqs. (8) or (16). In each 
iteration, for fixed βi we solve the following l1-
norm minimization problem 
  arg miny


 

 2

2 , (j)i j i j

i j

y H j   
 

    
 

  

(18)

                      

Which is convex and we can be solved efficiently. 
In this paper we adopt the surrogate algorithm in 
[9] to solve Eq.(18). In the (l+1)-th iteration, the 
proposed shrinkage operator for the jth element of 
αi is 

        1

,(v (j))
l l

i i j i ij S j  
             

(19) 

Where  S   is the classic soft-thresholding 

operator and 
     

(y K ) / c
l l lTv K     ,where

K H  , 
T T TK H  ,
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, /i j c   and c is an auxiliary parameter 

guaranteeing the convexity of the surrogate function. 

The derivation of the above shrinkage operator 

follows the standard surrogate algorithm in [9]. The 

interesting readers may refer to [9]. The interesting 

readers may refer to [9] for details 

 

C. Summary of the Algorithm 

In our NCSR algorithm the adaptive sparse 

domain strategy [21] is used to code each patch. We 

cluster the patches of image x into K clusters and 

learn a PCA sub-dictionary Φk for each cluster. For a 

given patch, we first check which cluster it falls into 

by calculating its distances to means of the clusters, 

and then select the PCA sub-dictionary of the cluster 

to code it. The proposed NCSR based image 

restitution  algorithm is summarized in Algorithm  

For fixed parameters λi.j and {βi} the the 

objective function in Eq.(18) is convex and can be be 

efficiently solved by the iterative shrinkage algorithm 

in the inner loop, and its convergence has been well 

established in[9]. Since we update the regularization 

parameter λi.j and {βi}  in every J0 iterations after 

solving a sub-optimization problem, algorithm is 

empirically convergent in general, as those presented 

in[38] 

 

IV. EXPERIMENTAL RESULTS 
To verify the image restitution performance of 

the proposed NCSR algorithm we conduct extensive 

experiments on image de-noising, de-blurring and 

super-resolution. The basic parameter setting of 

NCSR is as follows: the patch size7*7 is and K=70. 

For image de-noising, δ=0.02, L=3, and J=3; for 

image de-blurring and super-resolution, δ=2.4, L=5, 

and J=160. To evaluate the quality of the restitution 

images, the PSNR and the recently proposed 

powerful perceptual quality metric FSIM [32] are 

calculated.  

 

A. Image De-noising 

A set of 12 natural images commonly used in the 

literature of image de-noising are used for the 

comparison study. We can see that the proposed 

NCSR achieves highly competitive de-noising 

performance. We show the de-noising results on two 

typical images with moderate noise corruption and 

strong noise corruption, respectively. It can be seen 

that NCSR is very effective in reconstructing both the 

smooth and the texture/edge regions.  

All the four competing methods can achieve very 

good de-noising outputs. In particular, the de-noising 

image by the proposed NCSR has much less errors 

than other methods, and is visually more pleasant. 

 
 

B. Image De-blurring 
We applied de-blurring methods to both the 

simulated blurred images and real motion blurred 

images. In the simulate image de-blurring two 

commonly used blur kernels, i.e., 9*9 uniform blur 

and 2D Gaussian function(non-truncated) with 

standard deviation 1.6, are used for simulations. 

Additive Gaussian noise with noise levels

2n   is added to the blurred images. In 

addition, 6 typical non-blind de-blurring image 

experiments presented in [36] and [41] are conducted 

for further test. For the real motion blurred images, 

we borrowed the motion blur kernel estimation 

method from [34] to estimate the blur kernel and then 

fed the estimated blur kernel into the NCSR de-

blurring method. For color images, we only apply the 

de-blurring operation to the luminance component. 

We also test the proposed NCSR de-blurring method 

on real motion blurred images. Since the blur kernel 

estimation is a non-trivial task, we borrowed the 

kernel estimation method from [34] to estimate the 

blur kernel and apply the estimated blur kernel in 

NCSR to restitution  the original images. We can see 

that the images restitution by our approach are much 

clearer and much more details are recovered. 

Considering that the estimated kernel will have bias 

from the true unknown blurring kernel, these 

experiments validate that NCSR is robust to the 

kernel estimation errors. 

 
 

C. Image Super-resolution  

In image super-resolution the simulated LR 

image is generated by first blurring an HR image 

with a 7*7  Gaussian kernel with standard deviation 

1.6, and then down-sampling the blurred image by a 

scaling factor 3 in both horizontal and vertical 

directions. The additive Gaussian noise of standard 

deviation 5 is also added to the LR images, making 

the image restitution problem more challenging. 

Since human visual system is more sensitive to 

luminance changes, we only apply the image 
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restitution methods to the luminance component and 

use the simple bicubic interpolator for the chromatic 

components. The NCSR approach reconstruct the 

best visually pleasant HR  images. 

  

 
 

V. CONCLUSION 
In this paper  we presented a novel image 

restitution using non-locally centralized sparse 

representation model. The sparse coding  

noise(SCN), which is defined as the difference 

between the sparse code of the unknown original 

image, should be minimized to improve the 

performance of sparsity-based image restitution. To 

this end, we proposed a centralized sparse constraint, 

which exploits the image non-local redundancy, to 

reduce the SCN. The Bayesian interpretation of the 

NCSR model was provided and this endows the 

NCSR model iteratively reweighted implementation. 

An efficient iterative shrinkage function was 

presented for solving the l1-regularized NCSR model 

an iteratively reweighted implementation. An 

efficient iterative shrinkage function was presented 

for solving the l1-regularized NCSR minimization 

problem. Experimental results on image de-noising, 

de-blurring and super-resolution demonstrated that 

the NCSR approach can achieve highly competitive 

performance to other leading de-noising methods, 

and outperform much other leading image de-

blurring and super-resolution methods. 
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